/** * @author zz85 / https://github.com/zz85 * * Based on "A Practical Analytic Model for Daylight" * aka The Preetham Model, the de facto standard analytic skydome model * http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf * * First implemented by Simon Wallner * http://www.simonwallner.at/projects/atmospheric-scattering * * Improved by Martin Upitis * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR * * Three.js integration by zz85 http://twitter.com/blurspline */ THREE.Sky = function () { var shader = THREE.Sky.SkyShader; var material = new THREE.ShaderMaterial( { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: THREE.UniformsUtils.clone( shader.uniforms ), side: THREE.BackSide } ); THREE.Mesh.call( this, new THREE.SphereBufferGeometry( 1, 32, 15 ), material ); }; THREE.Sky.prototype = Object.create( THREE.Mesh.prototype ); THREE.Sky.SkyShader = { uniforms: { luminance: { value: 1 }, turbidity: { value: 2 }, rayleigh: { value: 1 }, mieCoefficient: { value: 0.005 }, mieDirectionalG: { value: 0.8 }, sunPosition: { value: new THREE.Vector3() } }, vertexShader: [ 'uniform vec3 sunPosition;', 'uniform float rayleigh;', 'uniform float turbidity;', 'uniform float mieCoefficient;', 'varying vec3 vWorldPosition;', 'varying vec3 vSunDirection;', 'varying float vSunfade;', 'varying vec3 vBetaR;', 'varying vec3 vBetaM;', 'varying float vSunE;', 'const vec3 up = vec3( 0.0, 1.0, 0.0 );', // constants for atmospheric scattering 'const float e = 2.71828182845904523536028747135266249775724709369995957;', 'const float pi = 3.141592653589793238462643383279502884197169;', // wavelength of used primaries, according to preetham 'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );', // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function: // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn)) 'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );', // mie stuff // K coefficient for the primaries 'const float v = 4.0;', 'const vec3 K = vec3( 0.686, 0.678, 0.666 );', // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K 'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );', // earth shadow hack // cutoffAngle = pi / 1.95; 'const float cutoffAngle = 1.6110731556870734;', 'const float steepness = 1.5;', 'const float EE = 1000.0;', 'float sunIntensity( float zenithAngleCos ) {', ' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );', ' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );', '}', 'vec3 totalMie( float T ) {', ' float c = ( 0.2 * T ) * 10E-18;', ' return 0.434 * c * MieConst;', '}', 'void main() {', ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );', ' vWorldPosition = worldPosition.xyz;', ' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );', ' vSunDirection = normalize( sunPosition );', ' vSunE = sunIntensity( dot( vSunDirection, up ) );', ' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );', ' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );', // extinction (absorbtion + out scattering) // rayleigh coefficients ' vBetaR = totalRayleigh * rayleighCoefficient;', // mie coefficients ' vBetaM = totalMie( turbidity ) * mieCoefficient;', '}' ].join( '\n' ), fragmentShader: [ 'varying vec3 vWorldPosition;', 'varying vec3 vSunDirection;', 'varying float vSunfade;', 'varying vec3 vBetaR;', 'varying vec3 vBetaM;', 'varying float vSunE;', 'uniform float luminance;', 'uniform float mieDirectionalG;', 'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );', // constants for atmospheric scattering 'const float pi = 3.141592653589793238462643383279502884197169;', 'const float n = 1.0003;', // refractive index of air 'const float N = 2.545E25;', // number of molecules per unit volume for air at // 288.15K and 1013mb (sea level -45 celsius) // optical length at zenith for molecules 'const float rayleighZenithLength = 8.4E3;', 'const float mieZenithLength = 1.25E3;', 'const vec3 up = vec3( 0.0, 1.0, 0.0 );', // 66 arc seconds -> degrees, and the cosine of that 'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;', // 3.0 / ( 16.0 * pi ) 'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;', // 1.0 / ( 4.0 * pi ) 'const float ONE_OVER_FOURPI = 0.07957747154594767;', 'float rayleighPhase( float cosTheta ) {', ' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );', '}', 'float hgPhase( float cosTheta, float g ) {', ' float g2 = pow( g, 2.0 );', ' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );', ' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );', '}', // Filmic ToneMapping http://filmicgames.com/archives/75 'const float A = 0.15;', 'const float B = 0.50;', 'const float C = 0.10;', 'const float D = 0.20;', 'const float E = 0.02;', 'const float F = 0.30;', 'const float whiteScale = 1.0748724675633854;', // 1.0 / Uncharted2Tonemap(1000.0) 'vec3 Uncharted2Tonemap( vec3 x ) {', ' return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;', '}', 'void main() {', // optical length // cutoff angle at 90 to avoid singularity in next formula. ' float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );', ' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );', ' float sR = rayleighZenithLength * inverse;', ' float sM = mieZenithLength * inverse;', // combined extinction factor ' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );', // in scattering ' float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );', ' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );', ' vec3 betaRTheta = vBetaR * rPhase;', ' float mPhase = hgPhase( cosTheta, mieDirectionalG );', ' vec3 betaMTheta = vBetaM * mPhase;', ' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );', ' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );', // nightsky ' vec3 direction = normalize( vWorldPosition - cameraPos );', ' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]', ' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]', ' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );', ' vec3 L0 = vec3( 0.1 ) * Fex;', // composition + solar disc ' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );', ' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;', ' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );', ' vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );', ' vec3 color = curr * whiteScale;', ' vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );', ' gl_FragColor = vec4( retColor, 1.0 );', '}' ].join( '\n' ) };